J Comput Virol (2010) 6:343-351
DOI 10.1007/s11416-009-0135-3

ORIGINAL PAPER

Developing a Trojan applets in a smart card

Julien Iguchi-Cartigny - Jean-Louis Lanet

Received: 4 January 2009 / Accepted: 26 August 2009 / Published online: 11 September 2009

© Springer-Verlag France 2009

Abstract This paper presents a method to inject a mutable
Java Card applet into a smart card. This code can on demand
parse the memory in order to search for a given pattern and
eliminate it. One of these key features is to bypass security
checks or retrieve secret data from other applets. We eval-
uate the countermeasures against this attack and we show
how some of them can be circumvented and we propose to
combine this attack with others already known.

1 Introduction

A smart card is a piece of plastic, the size of a credit card,
in which a single chip microcontroller is embedded. Usu-
ally, microcontrollers for cards contain a microprocessor and
different memories: Ram (for run-time data and OS stacks),
Rom (in which the operating system and the “romized” appli-
cations are stored), and Eeprom (in which the persistent data
are stored). Due to strong size constraints on the chip, the
amount of memory is small. Most smart cards sold today
have at most 5 KB of Ram, 256 KB of Rom, and 256 KB of
Eeprom. This chip usually also contains some sensors (like
light sensors, heat sensors, voltage sensors, etc.), which are
used to disable the card when it is physically attacked.

A smart card can be viewed as a secure data container,
since it securely stores data and it is used securely during
short transactions. Its safety relies on the underlying hard-
ware. A physical attack is quite difficult because the chip in
a card is embedded with sensors covered with a resin, and
all components are on the same chip (difficult to probe an

J. Iguchi-Cartigny - J.-L. Lanet (B<)
XLIM/DMI/SSD, 83 rue d’Isle, 87000 Limoges, France
e-mail: jean-louis.lanet@xlim.fr

internal bus). The software is the second barrier for its safety.
The embedded programs are usually designed neither for
returning nor modifying sensitive information without being
sure that the operation is authorized. Java Card is a kind of
smart card that implements the standard Java Card 3.0 [1]
in one of the two editions “Classic Edition” or “Connected
Edition”. Such a smart card embeds a virtual machine which
interprets codes already romized with the operating system
or downloaded after issuance. Due to security reasons, the
ability to download code into the card is controlled by a pro-
tocol defined by Global Platform [2]. This protocol ensures
that the owner of the code has the necessary credentials to
perform the action.

Java Card is an open platform for smart cards, i.e. able
of loading and executing new applications after issuance.
Thus, different applications from different providers run in
the same smart card. Thanks to type verification, the
bytecodes delivered by the Java compiler and the converter
(in charge of delivering compact representation of class files)
are safe, i.e. the application loaded is not hostile to other
applications in the Java Card. Furthermore, the Java Card
firewall checks permissions between applications in the card,
enforcing isolation between applications. Until now, it was
safe to presume that the firewall was efficient enough to avoid
bad behaviour from malicious applications (crafted applet
modified after off-card verification). In this paper, we will
show that an attacker can generate malicious applications
which bypass firewall restrictions and modify other applica-
tions, even if they don’t belong to the same security package.
Since the firewall is the only mandatory on-card security
mechanism in the Java Card our work reveals an important
security issue. Java card has been an important improvement
in the smart card world due to the security aspect of the Java
platform. Nevertheless some attacks have been successful in
retrieving secret data from the card. Thus we will present in

@ Springer

344

J. Iguchi-Cartigny, J.-L. Lanet

this paper a methodology to get access to data, which should
bypass Java security components.

In the next section, we describe the different components
involved in the Java Card’s platform security. Section 3
describes the state-of-the-art of smart cards logical attacks.
Then we introduce, a methodology to implement a Trojan
in the card in Sect. 4. Section 5 presents the evaluation of
our attack and encountered countermeasures. Finally, the last
section presents our future works and concludes.

2 Java Card

Java Card is quite similar to any other Java edition, it only
differs (at least for the Classic Edition) from standard Java
in three aspects: (i) restriction of the language, (ii) runtime
environment and (iii) the applet life cycle. Due to resource
constraints the virtual machine in the Classic Edition must be
split into two parts: the bytecode verifier executed off-card,
is invoked by a converter while the interpreter, the API and
the Java Card runtime environment (JCRE) are executed on
board. The bytecode verifier is the offensive security process
of the Java Card. It performs the static code verifications
required by the virtual machine specification. The verifier
guarantees the validity of the code being loaded in the card.
The bytecode converter transforms the Java class files, which
have been verified and validated, into a format that is more
suitable for smart cards, the CAP file format. An on-card
loader installs the classes into the card memory. The con-
version and the loading steps are not executed consecutively
(alot of time can separate them). Thus, it may be possible to
corrupt the CAP file, intentionally or not, during the transfer.
In order to avoid it, the Global Platform Security Domain
checks the integrity and authenticates the package before its
registration in the card. Along this paper when talking about
Java Card we will refer to the “Classic Edition”.

2.1 The Java Card platform

Developers write Java applets which can be uploaded to
Java Card smart cards. Then, the applet’s bytecode is inter-
preted by the embedded Java Card virtual machine (JVCM),
an implementation of the Java Card Platform Specification.
Such smart cards are thus open platforms, where new appli-
cations (or applets) can be uploaded after issuance of the card
to the final user.

Due to resource constraints, the JCVCM must be split into
two parts:

e First, the bytecode verifier (BCV) and the converter are
executed outside the card (off-card) to generate a valid
CAP file.

@ Springer

e Second, the interpreter, the API and the Java Card run-
time environment (JCRE) execute and handle the applet
behaviour inside the smart card.

In the first part, the bytecode verifier acts as an offensive
security process located in the JCVM. It performs static code
analysis on the Java class files, which is required by the JVM
specification. Then, the bytecode converter transforms these
files into a more suitable format used with smart cards: a
CAP file. This file is a JAR file containing a compact rep-
resentation of one or several class files adapted to the smart
card constraints.

The next step is the storage of the Java classes in the card
memory by the on card loader. During the loading process,
the CAP file is first unpacked into individual components,
which are then downloaded into the card sequentially,
component by component by the off-card loader. A spe-
cial application on the card—the Installer—receives the newly
downloaded applet and stores its content into the persistent
memory. It also requests from the system the linking of the
new classes to the packages already present on the card. After
loading and linking, the package is ready to be executed by
the JCVM.

2.2 Java Card security

The Java Card platform is a multi-application environment
in which an applet’s critical data must be protected against
malicious access from other applets [3]. To enforce protec-
tion between applets, traditional Java technology uses type
verification, class loaders and security managers to create pri-
vate namespaces for applets. In a smart card, it is not possible
to comply with the traditional enforcement process.

Firstly, the type verification is executed outside the card
due to memory constraints. Secondly, class loaders and secu-
rity managers are replaced by the Java Card firewall.

2.3 The bytecode verifier

Allowing code to be loaded into the card after post-issuance
raises the same issues as with web applets. An applet that
has not been compiled by a compiler (handmade bytecode)
or that has been modified after compilation can break the Java
sandbox model. Thus the client must check that the Java typ-
ing rules are preserved at the bytecode level.

The Java language is strongly typed, which means that
every variable and every expression has a type that is deter-
mined at compiling time. Type mismatches in the source code
are detected at compile time as well, and Java bytecode is
also strongly typed. Still, local and stack variables of the
virtual machine do not have unchanging fixed types even in
the scope of one method execution. Not all type mismatches
are detected at runtime, and this allows building malicious

Developing a Trojan applets in a smart card

345

applets exploiting this issue. For example, pointers are not
supported by the Java programming language. Though, they
are extensively used in Java Virtual Machine, where they
are referred to as references. Thus, the absence of pointers
reduces the number of programming errors. But it does not
stop attempts to break security protections by disloyal use of
pointers.

Bytecode verifier (BCV) is a crucial security component
in the Java sandbox model: any bug in the verifier causing
an ill-typed applet to be accepted can potentially enable a
security attack. At the same time, bytecode verification is
a complex process involving elaborate program analyses.
Moreover such an algorithm is very costly in terms of time
consumption and memory usage. For these reasons, many
cards do not implement such a component and rely on the
fact that it is the responsibility of the organisation that signs
the code of the applet to ensure that the code is correctly
typed.

2.4 Java card firewall

The separation between different applets is enforced by the
firewall which is based on the package structure of Java Card
and the notion of contexts. When an applet is created, the
JCRE uses a unique applet identifier (AID) from which it is
possible to retrieve the name of the package in which it is
defined. If two applets are instances of classes coming from
the same Java Card package, they are considered as belonging
to the same context. There is a superuser context, called the
JCRE context. Applets belonging to this context can access
objects from any other context on the card.

Every object is assigned to a unique owner context which
is the context of the applet that created the object. A method
of an object is said to be executed in the owner context of
the object. It is this context that decides whether access to
another object is allowed or not. The firewall isolates the con-
texts in such a way that a method executing in one context
cannot access any attribute or method of objects belonging
to another context.

There are two ways to bypass the firewall: via JCRE entry
points and via shareable objects. JCRE entry points are
objects owned by the JCRE that have been specifically des-
ignated as objects that can be accessed from any context.
The most significant example is the APDU buffer in which
commands sent to the card are stored. This object is man-
aged by the JCRE and, in order to allow applets to access
this object, it is designated as an entry point. Other exam-
ples include the elements of the table containing the AIDs
of the applets installed on the card. Entry points can be
marked as temporary. References to temporary entry
points cannot be stored in objects (this is enforced by
the firewall).

2.5 The sharing mechanism

To support cooperative applications on a single card, the
Java Card technology provides well defined sharing
mechanisms. The shareable interface object (SIO) mecha-
nism is the mechanism in the Java Card platform intended for
applets collaboration. The javacard. framework pack-
age provides a tagging interface called Shareable, and any
interface which extends the Shareable interface will be con-
sidered as a Shareable interface. Requests for services to
objects implementing a Shareable interface are allowed by
the firewall mechanism. When a server applet wants to pro-
vide services to other applets within the Java Card, it must
define the services it wants to export in an interface tagged as
Shareable.

Within the Java Card, only instances of classes are owned
by applets (i.e. are within the same security context), classes
themselves are not. No runtime check is performed when a
static field is accessed or when a static operation is invoked.
This means that static fields and operations are accessible
from any applet; however, objects stored in static fields belong
to the applet which instantiates them. The server applet may
decide whether to publish its Shareable Interface Objects
(SIOs) in static fields, or return them in static operations.

3 Related work

In order to retrieve some data from the card, we can use two
different approaches: physical attacks or logical attacks.

3.1 Physical attack

A first class of physical attacks is side-channel attacks [4].
These non-invasive attacks consist in observing an
unintended physical effect of computation (timing, data
exchanged on the I/O channels, power consumption, electro-
magnetic noise, etc.) to discover information like the secret
key used in some cryptographic operations. For instance, SPA
and DPA stand for Simple and Differential Power Analysis,
respectively, and aim at exploiting the information leaked
through characteristic variations in the power consumption
of electronic components. Fault induction attack, or perturba-
tion attack, consists in changing the behaviour of the compo-
nent in order to create an exploitable error [5]. Such faults can
be induced using different means, including glitches (a surge
of power on one of the cards I/O ports), light/laser exposure,
etc. The attack will typically try to make cryptographic oper-
ations weaker (by creating faults that can be used to recover
key or plaintext information), or avoid or corrupt the results
of checks (such as authentication or lifecycle state checks, or
else change the program flow).

@ Springer

346

J. Iguchi-Cartigny, J.-L. Lanet

3.2 Logical attack

As explained in [6] logical attacks consist in executing ill-
formed applications, i.e., malicious applications that are
made of illegal bytecode instructions sequences or that do
not have valid bytecode parameters. Such attacks are limited
to cards for which:

e post issuance is allowed,
e the attacker has the credentials (Security Domain keys),
e the card must not include a bytecode verifier.

W. Mostowski et E. Poll [7] proposed several attacks on
Java Card using an ill-typed code. One way is to exploit
type confusion between primitive arrays of different types.
By convincing the applet to handle a byte array as a short
array, it would theoretically be possible to read or write
twice the size of the original byte array. They use different
approaches: a flaw in the implementation of the transaction
mechanism and the shareable interface.

Another way [8,9] is to trick the virtual machine to handle
an object as an array. Hence, fields from a forged object can
be seen as length of the array if they are stored at the same
offset in the physical memory. The attacker would be able to
set the size of the array and thus have access to the whole
memory of the Java Card. The authors exploit the previous
attack to handle reference as short (and short as reference),
thus allowing reading and writing existing references, some-
thing theoretically impossible on Java Card. They proposed
several exploitations of this method. First, it is possible to
swap the references of two objects even if they have incom-
patible types. An attacker can also manipulate the system-
owned applet identifier (AID) and thus impersonate a valid
applet (using a stolen AID). Finally, it would be possible to
spoof references and thus be able to read part of the memory.
This last step was not conclusive, as most of the cards refuse
spoofed references.

Hypponen [10] proposed a way to exploit weaknesses in
static instructions (getstatic and putstatic) and in the refer-
ence location component of the CAP file which can lead to
reference spoofing. The getstatic instruction is used to get
a static field from a class. The two operands of this opcode
are used to build an index in the constant pool. During applet
loading, the on-card linking process will replace the two oper-
ands with an address in real memory. The idea of the attack is
to remove the entry in the Reference Location component so
that the operand of the getstatic will not be resolved. Thus it
becomes possible to assign any value to the two operands, and
therefore to point to any real address. This attack works (in the
absence of a bytecode verifier) because no context check is
done during access to static field. However, the author did not
present any experimental results or an implementation of the
attack.

@ Springer

In this paper, we will prove that such an attack is possi-
ble, and we propose a very efficient implementation using
another bytecode weakness that allows us to generate a safe
mutable code.

4 The malicious code

Instead of dumping the memory byte after byte we use the
ability to invoke an array that can be filled with any arbi-
trary bytecode. Within this approach, we are able to define a
search and replace function. To demonstrate the application
of such attack, please consider the following generic code,
often used to check if a PIN code has been validated.

public void debit (APDU apdu)
{

if (!pin.isValidated())

{
ISOException.throwIt (SW_AUTH FAILED)
}

// do safely something authorized

}

The pin object is an instance of class ownerPin, which is
a secure implementation of a PIN code (ratification counter
decrements before check and so on). If the user sets a wrong
PIN code, an exception is thrown. The goal of our Trojan is
to search for the bytecode of this exception treatment and to
replace it with a predefined code fragment. For example, if
the Trojan finds in memory the pattern 11 69 85 8D 00 12
and if the owner of this method is the targeted applet then
the Trojan replaces it by the following pattern: 00 00 00 00
00 00. Knowing that the bytecode 00 stands for the NOP
instruction, the original code becomes:

public void debit (APDU apdu)
{

if (!pin.isValidated())
{ }
// do safely something authorized

}

The interest of the search and replace Trojan is obvious.
Of course if the Trojan is able to perform such an attack
it could also scan the whole memory and characterize the
object representation of the virtual machine embedded into
the card. It becomes also possible to get access to the imple-
mentation of the cryptographic algorithms which in turn can
be exploited to generate new attacks.

The basic hypotheses of this attack are: the attacker has
the credentials to download his own code into the Java Card
and the card does not include a bytecode verifier.

4.1 The mutable applet
The first step is to get a reference to an array located in the

context of one of our own applets. Suppose that the following
function is in our applet:

Developing a Trojan applets in a smart card

347

public short getMyAddresstabByte (byte[] tab)

{

short dummyRef=(byte) 0x55AA;

tab[0] = (byte)O0xFF; // second instruction
return dummyRef;

}

A look at the bytecode level shows that the second instruction
is an aload 1, so the reference of the array tab is on the top of
the stack after the second instruction. If we change each byte-
code by the instruction NOP between the second instruction
and the return statement, then the function will return the
reference of the array tab instead of the short dummyRef.
Thus, the array reference can be sent back to the terminal
(as a short) using an APDU command. Using this bytecode
manipulation of the external file we are able to get a valid
reference on elements belonging to our security context.

We begin by defining an array variable (called codeD).
The compiled code is the following:

public byte[] codeD = {(byte)0x01, (byte)0x00, (byte)0x7D,
(byte) 0x00, (byte)0x00, (byte)0x78};

If you consider the contents of this array as a method, we
have now a function dedicated to read a static field. The two
first bytes correspond to the header of the method and will
never be interpreted as bytecode.

//flags : 0

//max_stack : 1

//nargs : 0

//max_locals : 0

00 aconst_null // header of the method

0l nop // i dem

02 getstatic_s 0 0

05 sreturn

We can modify the value of the third and fourth bytes with
an APDU command,

and thus choose the operands of getstatic s:
codeD[3]= apduBuf [ISO7816.0FFSET_CDATA];
codeD[4]= apduBuf [ISO7816.0FFSET_CDATA+1];

We need a dummy definition (functionToReplace()) to gen-
erate a reference on a static method:

// function to replace
static public short functionToReplace ()

{

return ad;

}

Now, we can write the loop used to search and replace:

For (i=0...){

// to generate a ref to be replaced later
Util.setShort (searchBuf, k, functionToReplace()) ;
codeDump [4]++; //increment low address

if (codeDump[4] == (byte)0x00)

{

codeDump [3]++; // increment high address

}

// search and replace the pattern in searchBuf

}

We use another weakness on invokestatic and we modify the
Method Component in order to reference the array CodeD
instead of the original method. We also have to modify the

Reference Location Component of the CAP file to remove
the entry as shown in the Fig. 1.

At offset 0x014e in the Method Component we find the
invokestatic instruction calling fonctionToReplace(). We can
see that the operand is an index referring to the Constant Pool
Component and that the operand offset is referenced in the
Reference Location Component. First, we edit the file and
change the value of this operand offset (0x014f) by the value
of its successor in the Reference Location Component. Thus
the linker will resolve twice the next entry (which refers to
the method setShort()).

In the second step, we replace the operands of invokestatic
by the address of the array’s content and then we download
and install the mutable applet. Note that we need to retrieve
the resolved address of this array, which leads to a two step
installation. First, during the installation, we send an APDU
command to retrieve the address of the array by using the
function described in the Sect. 4.1. In the second step, we
replace the operand of getstatic, denoted s, by the retrieved
address, we remove the entry in the reference location com-
ponent and then we download and install the mutable applet.
The Trojan applet is then ready to be initialized by APDU
commands at any time during the card live. If the assets to
be obtained are present into the card, initialisation command
and search and replace command can be process.

Then the invokestatic will invoke the buffer code and we
will just have to increment the adequate location in the buffer
to parse the whole memory. As soon as we detect the first
expected bytecode, we start storing the dumped memory in
searchBuf[k]. Then we check if the next bytecode is the one
expected. If not we reset the index k, and we continue until we
have parsed the entire memory. In fact, the Trojan relies on
the know-how of the internal representation of the objects in
the memory. Due to the fact that this information is not public,
we had to get the complete internal structure of the CAP file
inside the card. Thus, the search and replace method takes
this information into account to locate the expected applet
referenced by its AID. It also contains the methods used to
get the address of the array, as well as a method to setup the
initial value of the array.

The greatest difficulty is to modify correctly the CAP
file while keeping all the interdependent information cor-
rectly. We do not have a tool performing this in an automatic
way (which would be very helpful to handle efficiently such
attacks).

5 Evaluation of the attack

The Java Cards that have been considered in this paper are
publicly available at some web store. We evaluated some
cards from six smart card providers and we will refer to
the different cards using the reference to the manufacturer

@ Springer

348

J. Iguchi-Cartigny, J.-L. Lanet

Constant Pool Component
;* 0008, 2 */ CONSTAENT StaticFieldRef : On BoardLlnker
0x0000 -
2=(@osss) |
Method Component
Method info[1]//@000C{
//flags :0 //
T (2 On Board Method,
//max locals:O (3)
/*000e*/ getstatic:_ @9af4) -
/*0011*/ sreturn Method info[l]{
) 7 10
Reference Location component gets tatic b 0 305
o sreturn
Offset_to_byte2 indices {@O00f...)}
Fig. 1 Embedded linking process
Table 1 Smart Card
characteristics used in this study Reference Java Card GP Characteristics
a-2la 2.1.1 2.01
a-21b 2.1.1 2.0.1 Same as a-21a plus RSA
a-22a 2.2 2.1 64 KB Eeprom, SLE66CX322 (8051 derivative), page size 1 KB
a-22b 2.1.1 2.0.1 32KB Eeprom, RSA
b-21a 2.1.1 2.1.2 16 KB Eeprom, RSA PSWES5017 (core 8051)
b-22a 2.1.1 2.0.1 16 KB Eeprom, hW DES
b-22b 2.1.1 2.1.1 P5CDO036 (core 8051), page size 2KB
c-22a 2.1.1 2.0.1 RSA PSWES033 (core 8051)
c-22b 22 2.1.1 64 KB Eeprom, dual interface, RSA
d-22 2.2 2.0.1
e-21 2.1.1 2.0.1 16 KB Eeprom, SLE66CX165P (8051 derivative), page size 1 KB

associated to the version of the Java Card specifications. At
the time we perform this study no Java Card 3.0 were avail-
able and the most recent cards we had were Java Card 2.2.

Manufacturer A, cards a-21a, a-21b, a-22a and a-22b. The
a-22a is a USIM card for the 3G, the a-21b is an exten-
sion of a-21a supporting RSA algorithm, and the a-22b
is a dual interface card.

Manufacturer B, cards b-21a, b-22a, b22b. The b-21 sup-
ports RSA algorithm, the b-22b is a dual interface smart
card.

Manufacturer C, cards c-22a, c22b. The first one is a dual
interface card, and the second support RSA algorithm.
Manufacturer D, card d-22.

Manufacturer E, cards e-22.

@ Springer

The cards have been renamed with respect to the standard
they support. The following table summarizes it (Table 1).

We have conducted this attack on some publicly available
evaluation smart cards. While some of these cards imple-
mented countermeasures against this attack, we managed to
easily circumvent a few of them.

5.1 Loading time countermeasures

The loader-linker can detect basic modifications of the cap
file. Some cards can block themselves when erasing an entry
in the refLocation component without calculating the
offset of the next entry. For instance, the card a-21a blocked
when detecting a null offset in the refLocation compo-
nent. But it is easy to bypass this simple countermeasure

Developing a Trojan applets in a smart card

349

Table 2 Load time countermeasures

Card reference RefLocation correct Type verification

a-21b X
c-22b, e-21 X

with elaborate tool able to perform more complex Cap file
modifications.

At least three of the evaluated cards have a sort of type
verification algorithm (a complex type inference). They can
detect ill-formed bytecodes, returning a reference instead of
a short for instance. Looking at Common Criteria evaluation
reports, it is evident that these cards were out of our hypoth-
eses: they include a bytecode verifier or, at least, a reduced
version of it. Thus, such cards can be considered as the most
secure, because once the CAP file is detected as ill-formed,
cards can reject the CAP file or become mute (for instance
c-22b) (Table2).

5.2 Runtime countermeasures

For the remaining cards which pass the loading phase,
we can evaluate the different countermeasures done by the
interpreter.

A countermeasure consists in checking writing operations.
For instance, when writing to an unauthorized memory area
(outside the area dedicated to class storage) the card can
be blocked or return an error status word. More generally,
the cards can detect illegal memory access depending of the
accessed object or the bytecode operation. For instance, one
card (c-22a) limits the possibility to read arbitrary memory
location to seven consecutive memory addresses (Table 3).

On the remaining cards, we were able to access and com-
pletely dump the memory. The following table summarises
the different results we obtained. For each evaluated card, we
explain what we have reached with the attack, and then the
level of the countermeasure and the portion of the memory
dumped (Table4).

We can compare the countermeasures encountered in this
attack with those described in [7]. The first countermeasure
described consists in dynamic type inference, i.e. a defensive
virtual machine. We never found such a countermeasure on
the card we evaluated but may be it is integrated on cards

Table 3 Runtime countermeasures

Card Memory Memory Read
reference area check management access
a-22a X X
b-22b X

c-22a X

like c-22Db or e-21 for which we did not succeed with our
attack. Due to the fact that our attack does not modify the
array size, any countermeasure trying to detect a logical or
a physical size modification will not be efficient. The last
countermeasure described concerns the firewall checks. The
authors do not try to bypass the firewall using this methodol-
ogy, thus they did not succeed in discovering this weakness.
Nevertheless, their approach could be used, and in particular
the buffer overflow for the card c-22a for which our attack
did not succeed. But if we modify the size of the array, we
will be able to bypass the countermeasure on bound check.

5.3 Evaluation of other attacks

One of our hypotheses is that the card does not embed a
type verifier. In order to relax this hypothesis we evaluate
the approach described in [7]. Poll et al. presented a quick
overview of classics attacks available on smart card and gave
some countermeasures. We will firstly present the different
kinds of attacks and after explain which ways we followed.
There are different methods presented in this paper:

e Shareable interfaces mechanisms abuse
e Transaction Mechanisms abuse

The idea to abuse shareable interfaces is really interesting
and can lead tricking the virtual machine. The main goal is
to have type confusion without the need to edit CAP files.
To do that, we have to create two applets which will com-
municate using the shareable interface mechanism. To create
type confusion, each of the applets will use a different type
of array to exchange data. During compilation or on load,
there is no way for the BCV to detect such a problem.

The problem seems to be that every card they tried, with
an on card BCV, refused to allow applets using shareable
interface. As it is impossible for an on card BCV to detect
this kind of anomaly, Erik Poll emitted the hypothesis that
they decided to forbid any use of shareable interface on card
with an on card BCV. In our experiments, we succeed to pass
a byte array as a short array in all case but when we exceeded
the standard ending of the array, an error was checked by
the card. This means that the type confusing is possible but
a runtime countermeasure is implemented again this attack
(Table5).

The second option was the transaction mechanism. The
purpose of transaction is to make a group of operation
becomes atomic. Of course, it is a widely used concept,
like in databases, but still hard to implement. By definition,
the roll-back mechanism should also de allocate any objects
allocated during an aborted transaction, and reset references
to such objects to null. However, they find some strange
cases where the cards keep the reference of objects allocated
during transaction even after a roll back. If we can get the

@ Springer

350

J. Iguchi-Cartigny, J.-L. Lanet

Table 4 Comparison of the

countermeasures for the Card reference Reading an address Writing an address Countermeasures Memory dumped

memory dump
a-2la X X 8000-FFFF
a-21b X Card Terminated 8000-FFFF
a-22a X Bypassed 8000-FFFF
a-22b X X 8000-FFFF
b-21a X X 8000-BFFF
b-22a X X 8000-BFFF
b-22b X X 8000-FFFF
c-22a X Partially bypassed Seven bytes
c-22b Strong
d-22 X X 8000-BFFF
e-21 Strong

Table 5 Array bounds check

Card reference Type confusion Result after exceeding array’s length

a-22a Yes 6F 00
b-21a Yes 6F 00
b-22b Yes 6F 00
c-22a Yes 6F 08

Table 6 Abusing transaction mechanism

Card Call Call to Make Type
reference to new TransientArray confusion
a-22a No Yes Yes

b-21a Yes Yes Yes

c-22a No Yes No

e-21 No Yes No

same behaviour, it should be easy to get and exploit type
confusion.

The other confusion we used is an array of bytes and an
object. If we put a byte as first object attribute, it is bind to
the array length. It is then really easy to change the length of
the array using the reference to the object (Table 6).

As observed by [7] several cards refuse a code that creates
a new object in a transaction. But surprisingly if we use the
method of MakeTransientArray of the API it becomes
feasible for the cards under test.

6 Future works

During the dump of some cards we discovered that we have
had access to a RAM area at the lowest addresses in mem-
ory. Firstly, we discovered the reference of the APDU’s class
instance by using the same method as EMAN: 0x01D2 (sit-
uated in RAM area). At this address, the following structure

@ Springer

was found: 00 04 29 FF 6E OE. It represents the instance
of APDU class, so we can deduce the address of the class
APDU which is Ox6EOQE (situated in ROM area).

After this observation, we wanted to find the APDU buffer
in the RAM memory which is probably near to the class
APDU'’s instance reference. That’s why we have searched a
table of 261 bytes (105 in hexadecimal). We found it at the
address Ox1DC. It was confirmed because a pattern of an
APDU command was found at the beginning of the table:
“80 31 00 00 02”.

Secondly, we wanted to find the stack. We believed it was
near to the APDU buffer. So, we analyzed the operations
used when the dump was made and looked in RAM mem-
ory. After that, we deducted that the stack was just before
the APDU buffer, near to the address 0x7B. In fact, near to
this we found this short value 0x01D2 which matches to the
instance’s reference of the APDU class and 0x01DC which
is the address of the APDU buffer.

So we know that the Java stack is implemented on the
a-2la card (no experiment has been conducted yet on the
other cards). This means that we have the call history avail-
able and that the VM doesn’t erase the value on top of the
stack. We have to check if this is still valid during a con-
text switch. If this hypothesis is true it becomes possible to
steal the value of the PIN code of the user. It is passed as a
parameter on top of the stack before the call to the method
verifyPin().

Finally we want to evaluate the implementation of the
BCYV, because this component is known to be highly com-
plex and prone to implementation errors. We are developing
a model of this security function and a library to manipulate
CAP file. Then thanks to our OPAL library,! we will gen-
erate test suites to characterize the BCV and check faulty
implementation.

1 http://gforge.inria.fr/projects/opal/

http://gforge.inria.fr/projects/opal/

Developing a Trojan applets in a smart card

351

More generally, we believe that using various logical
attacks could lead to information disclosure even for very
recent smart cards. Furthermore, our next step is to use hard-
ware attacks combined with logical attacks.

7 Conclusion

We are currently investigating other countermeasures as well
as a way to remove one of our hypotheses. For instance, we
are looking at the attack described in [7] to circumvent the
BCYV protection. Another way is to evaluate the implemen-
tation of the BCV which is a component known to be highly
complex and prone to implementation errors. We believe that
using a framework of different logical attacks should reveal
BCV implementations flows.

We have shown in this paper the preliminary results of
the EMAN attack. Our contribution is to propose a com-
plete and optimized method of Hypponen idea by allowing
a self mutable code in a card, which has never been done
until now. As a result, we are able to search and replace any
code fragment in the memory, even if this memory segment
is protected by the Java Card security mechanism. We have
broken the segregation property offered by the firewall. This
attack is based on two hypotheses: (i) postissuance is allowed
and we have the necessary credentials, (ii) there is no BCV
in the card. Our EMAN attack has been successfully tested
against several smart cards. We demonstrated that this exploit
was successful on some cards, only one became mute while
detecting the ill-formed CAP file using a bytecode verifier.
This attack has been made possible by the pre link process
and the absence of an embedded bytecode verifier. In order

to relax the hypothesis on the presence of such a bytecode
verifier, we are investigating for another solution based on
a hardware fault injection to introduce type confusion in the
code stored in the EEPROM memory.

References

1. Virtual machine specification, java card platform, version 3.0, clas-
sic edition (2008). http://java.sun.com/javacard/3.0/

2. Global Platform Specification 2.2. http://www.globalplatform.org/
specifications.asp

3. Girard, P, Lanet, J.L.: New security issues raised by open cards. Inf.
Secur. Tech. Rep. 4(1), 4-5 (1999)

4. Anderson, R., Kuhn, M.: Tamper resistance: a cautionary note.
In: WOEC’96: Proceedings of the 2nd conference on Proceedings
of the Second USENIXWorkshop on Electronic Commerce, p. 1.
USENIX Association, Berkeley (1996)

5. Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.:
The sorcerer’s apprentice guide to fault attacks. Proc.
IEEE 94(2), 370-382 (2006)

6. Joint interpretation library application of attack potential to smart-
cards, v2.1, available at http://www.ssi.gouv.fr/site_documents/
JIL/JIL-The_application_of_attack_potential_to_smartcards_
V2-1.pdf (2006)

7. Mostowski,W., Poll, E.: Malicious code on java card smartcards:
Attacks and countermeasures. In: Proceedings of the Smart Card
Research and advanced application conference (CARDIS 2008),
pp- 1-16 (2008)

8. Vertanen, O.: Java Type Confusion and Fault Attacks, Lec-
ture Notes in Computer Science, vol. 4326/2006. pp. 237-251.
Springer, Berlin (2006)

9. Witteman, M.: Smartcard security. Inf. Secur. Bull. 8, 291-298
(2003)

10. Hypponen, K.: Use of cryptographic codes for bytecode verifi-
cation in smart card environment. Master’s thesis, University of
Kuopio (2003). Available at http://dx.doi.org/10.1007/978-3-540-
69485-4_15

@ Springer

http://java.sun.com/javacard/3.0/
http://www.globalplatform.org/specifications.asp
http://www.globalplatform.org/specifications.asp
http://www.ssi.gouv.fr/site_documents/JIL/JIL-The_application_of_attack_potential_to_smartcards_V2-1.pdf
http://www.ssi.gouv.fr/site_documents/JIL/JIL-The_application_of_attack_potential_to_smartcards_V2-1.pdf
http://www.ssi.gouv.fr/site_documents/JIL/JIL-The_application_of_attack_potential_to_smartcards_V2-1.pdf
http://dx.doi.org/10.1007/978-3-540-69485-4_15
http://dx.doi.org/10.1007/978-3-540-69485-4_15

	Developing a Trojan applets in a smart card
	Abstract
	1 Introduction
	2 Java Card
	2.1 The Java Card platform
	2.2 Java Card security
	2.3 The bytecode verifier
	2.4 Java card firewall
	2.5 The sharing mechanism

	3 Related work
	3.1 Physical attack
	3.2 Logical attack

	4 The malicious code
	4.1 The mutable applet

	5 Evaluation of the attack
	5.1 Loading time countermeasures
	5.2 Runtime countermeasures
	5.3 Evaluation of other attacks

	6 Future works
	7 Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

